A Continuous Self-Organizing Map using Spline Technique for Function Approximation

نویسندگان

  • Michaël AUPETIT
  • Pierre MASSOTTE
  • Pierre COUTURIER
  • Georges Besse
چکیده

We propose a new method called C-SOM for function approximation. C-SOM extends the standard Self-Organizing Map (SOM) with a combination of Local Linear Mapping (LLM) and cubic spline based interpolation techniques to improve standard SOMs' generalization capabilities. CSOM uses the gradient information provided by the LLM technique to compute a cubic spline interpolation in the input space between neighbouring neurons of the map, bringing a first-order continuity at the border hyperplanes of their respective Voronoï's regions. We present the case of a onedimensional map and show C-SOM performs better than SOM and LLM in an approximation test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C - Som : a Continuous Self - Organizing Map for Function Approximation

We propose a new method called C-SOM using a Self-Organizing Map (SOM) for function approximation. C-SOM takes care about the output values of the «win-ning» neuron's neighbors of the map to compute the output value associated with the input data. Our work extends the standard SOM with a combination of Local Linear Mapping (LLM) and cubic spline based interpolation techniques to improve its gen...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Function Approximation with Continuous Self - Organizing Maps using Neighboring Influence Interpolation

A new multi-dimensional interpolation method for function approximation using Self-Organizing Maps (SOMs) [1] is proposed. The output is continuous and infinitely differentiable in all the interpolation area, and the error function has no local minima insuring the convergence of the learning toward the minimal error. The complexity is O(n) in the general case (where n is the number of neurons)....

متن کامل

Gait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map

The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...

متن کامل

A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations

In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999